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Abstract

In this article we review the main approaches extensively investigated for claims reserving
in general insurance. We first introduce the models underlying the most-known Chain Ladder
method and Bornhuetter-Ferguson method. Then we discuss their Bayesian versions, Generalized
limear models for claims reserving and the bootstrap approaches to evaluating the variabilty of
predicted /estimated reserves are reviewed also. In addition, we conclude the paper by introducing

the multivariate version for claims reserving methods.

1 Introduction

1.1 General insurance and claims reserving

Insurance industries can be put in two categories: life insurance and non-life insurance. There are
rather different characteristics between Non-life and life insurance products, such as terms of contracts,
type of claims, risk drivers, etc., and in many countries there is a strict legal separation between these
two insurance products such that any company dealing with one type of insurance products is not
allowed to operate that other type of insurance products. While the term non-life insurance is known
in continental Europe, it is known as General Insurance in UK and Property and Casualty Insurance
in USA. A life company develops and sells such insurance products motor/car insurance (e.g., motor
third party liability and motor hull), property insurance (e.g., property against fire, flooding, business

interruption, etc.), liability insurance (e.g., director and officers (D&O) liability insurance) accident
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Figure 1: Claim process.
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insurance (personal and collective accident, including compulsory accident insurance and workers’
compensation), health insurance, marine insurance, etc. The history of a typical non-life insurance
claim can be illustrated in the following Figure 1, in which an accident occurred at a time between the
insurance period and then reported some time later at the reporting date with the claim being settled
at a further later time point indicated by closing date. For certain cases, due to certain reasons, e.g.,
new evidence is discovered for a liability insurance such that the account of the closed claim has to be
reopen to handle newly raised claims.

We are here concentrated in the claims in terms of money but set aside the details in insurance
operation and accounting, e.g. inflation effect that has been observed in the literature. At the
evaluation date, usually the end of an accounting year, the insurer need to make down the figure of
the money to be kept to cover the future payments for claims. This total amount of money is referred
to as claims reserve (or loss reserve). As shown in the above figure, we will distinct incurred but not
reported and reported but not settled (RBNS) claims; the meanings of which are clear from the figure.
And the future payments include two part: one for the IBNR claims and one for RBNS claims.

Classically, a majority of actuaries make their loss reserving based on the data sets that are known

as development triangles or aggregate data. The data sets are mostly in the form
D={X;,i=0,1,...,1,j=0,1,...(I —i) N J}, (1.1)

where ¢ indicates accident years, j the development years, X;; the claims amount caused by the
accidents occurred in accident year ¢ and is generally referred to as development year/period, and I
the number of years in which partial or the entire claims history are observed and J is the maximum
development years. Note that the calendar evaluation year is I and I > J is generally required. The

unknown X;; for j € (I —1,J] is referred to as outstanding loss liabilities for ¢ > I — J.
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For all i € {0,--- ,I}, j € {0,---,J}, let C;; denote the cumulative payments for accident year
of the first j 4 1 development years, i.e., Cj; = Zi;:o X Therefore the outstanding loss liability for
accident year i is B

Ri=Cij—Ciyr—i = Z Xi k- (1.2)
k=I—i+1
Classically, the data set D is taken as a set of deterministic numbers and the objective is to predict
Z{:o R; or equivalently Zfzo Cis. In the later of last century, researchers started to model X;; by
random variables and hence changed the objective to estimating the mean of Zf:o C;y. Actually,
we can generally consider the objective of claims reserving as estimating the distribution or certain
functionals of the random claims 27,'[:0 C;j. based on the observed data D.

Moreover, denote the set of observations at time I for the first jth development years by
Dj={Xipi+k<I,0<EkE<j}, j=0,1,---,J (1.3)
then Dy = Dy is all the available observations at time I. Finally, we let
Fij=0(Cip,...,Cij) j=0,1,---,J—1 (1.4)

be the filtration generated by the loss claims history of accident year ¢ and development year j.

The existing claims reserving methods for data sets of form (1.1) include the most popular chain
ladder (CL) and Bornhuetter-Ferguson (BF) methods. The stochastic methods developed after the
later of last century were mainly concerned with the construction of as general as possible models that
justify CL and BF methods. In all these models, the following is the fundamental assumption and is

respected by all stochastic models.

Model Assumption 1.1 1. {C;;,j =0,1,...,J} are mutually independent over i =0,1,...,1I.

2 Stochastic Models for Chain Ladder Method

2.1 Distribution-free Chain-Ladder model

The chain ladder method may be the most popular technique for reserving because of its simplicity and
distribution-free assumption. The following chain ladder model assumptions are given Mack (1993)

[16].

Model Assumption 2.1 1. There exist a set of development factors fo, f1,---, fsj—1 > 0, referred
to as development factors, such that for all 0 <i <1 and all 1 < j < J we have

E[C;j|Fij-1] = E[Ci|Cij-1] = fj-1Cij-1.
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2. There exist a set of positive numbers 0(2), . ,03_1 > 0, such that for oll 0 < i < I and all
1 <5 < J we have
Var(Cyj|Fij1) = Var(Ci;|Cij1) = 051 Cij 1. (2.1)

2.1.1 Feature of the model

Under this basic assumption, it can be easily seen that

J-1 j-1 J-1
E[C;y|D1) = Cis-ifi—i-- fr-1 and Var(Ciy|Dr) = Cisi > [[ fmo [ £, (22)

j=I—im=I—i n=j+1

where the second equality can be verified by first noting that Var(C;;|Dr) = Var(C;s|Fi 1—;) and thus

Var(C;;|Dr) = E[Var(Cij|Fij-1)|Fi1—i) + Var[E(Cis| Fi,s—1)|Fir—i]

= 05 B[Ciy1|Fig—i] + [7 1 Var(Cis| Fi 1)
J—2
= 05.1Cissi |[ fom+ £ Var(CigalFiri),

m=1—1

and then recursively applying this equality.

2.1.2 Estimation

For every j =1,2,...,J, denote F;_1 = \/5:0 Fi(j—1)a(i—i)- The effective data to estimate f;_1 are
Cij-1,Cij,1=0,2,...,J — j, satisfying a linear model

Co,;j Co,j—1
Ci-jj Cr—jj-
T
where ¢ = ( €0 ... Ej_j ) satisfying E (¢|Fj—1) = 0 and Var (¢|Fj_1) = diag(Co j—1, - ,Cy—jj—1)-
Thus the conditional BLUE (best linear unbiased estimator) of f;_; given F;_; are
R Z(—j C .
fin= G55 (2.3)
>i—0 Cij—
Meanwhile, JJZ can be estimated by
I—j—1
1 Cij -~
—~2 ij+1 2
i — Cii - )2 2.4
Tl S Z:; ot (24)
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It is also not difficult to examine that E [J?I—z . --J?J,1|]-}J,i} = fr—i--- fs—1- Then an unbiased
estimator of E[C; ;|Dy] is given by

C{ = ElCigD1) = Cigifri-- fra (2.5)
Here we note that the unbiasedness does not depends on the second item of Assumption 2.1.

Remark 2.1 From formula (2.5), it is very apparent that the estimator @CJL might not be robust with
respect to the outlier of C; 1—;. A robustification of the chain-ladder method can be found in a recent

work by Verdonck, Van Wouwe and Dhaene (2009).

2.1.3 Estimation of the MSEP

Since the claims in different accident years are independent, it holds that

1 1
Var( Z CZ'J|D[) = Z Var(C’ij |D])
i=1 i=1

The mean squared error of the prediction C’g 'L (MSEP) is given by

MSEPE = [(CCF = BIC /D) Fia| = C2LB [ (Frive Foon = froi o fo0)?] Fia ]
(2.6)
The following discusses the estimation of M SEPL
Mack’s method.
Mack (1993)[16] gave the following approach for estimating the parameter estimation error. Intro-

duce for j e {I —i4,---,J -1},

Ty = J/c\lfi"'f;‘fl(fj - J?j)fjﬂ e frea

This implies that

J-1
(COF = BlCiy D2 = oy > T24+2 > TiT).

j=I—i I—i<j<k<J-1

Note that E[T}|Dx] = 0 and that T} is Dj-measurable for j < k. Moreover, under the assumption on

the variance of Cjj, see equation (2.1), We see that

0 if j <k
2
J

E[T,TDi = { - 52 7
j f?—i"'f]?—lwsz—kl'”fgfl’ if j =k
J

(2.7)
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where § ][»k] = Zf:o C;j. Hence we further have

J-1 2
o°
MSEPCE =B |Gl 3 fiae - Fagrimfine- 15 (2.8)

j=I—i J

Replace the unknown parameters f; by f/; given in (2.3) and cr? by @;° given in (2.4) in (2.2) and
—CL
(2.8), we get the following estimator for msep(C;; | Dy),

J—1 ~2

. _—CL.  ,—CL\y 52, 1 1

mSePg, ; 5, (Ciy ) =(Cis ) %(ACL + [17];1])' (2.9)
=i fi NGy S

Time Series and Enhanced Time Series Model.

The Time Series Model has been investigated by several authors, such as [2] and [21]. [6] discussed
different approaches for the estimation of MSEP in the Time Series framework. Moreover, [36] pro-
posed the Enhanced Time Series Model to describe the uncertainty whether the deterministic chain

ladder factors f; are still valid for future claims development behavior.

Model Assumption 2.2 (Time Series model) The cumulative payments C; ; satisfy

Cij = fi-1Cij-1+0j-1/Cij-18i (2.10)

where conditional on Dy, €; j are mutually independent with E|e; j|Dy] = 0, E[E?’jlpo} =1 and P[C;; >
0Do] = 1.

Define the individual development factor for accident year ¢ and development year j by

C; i
F =4 2.11
,] Ci,jfl ( )

It is easy to check that under Model Assumption 2.2, equality (2.2) also holds and further we have

-1 (2.12)

E[F;|Cij-1] = fj-1 and Var(F;;[Cij-1) = o
,J—

then the BLUE for f;, conditional on Dj, coincides with (2.3) and therefore (2.5) is also an unbiased

estimator of E[C; ;|Dy] in the Time Series model. Therefore the estimation error are given by
(CLF = BlCi D)) = Copi(friv e Fooa = froive f10)? (213)

which coincides with (2.6).
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In order to determine the (conditional) estimation error, we need to determine the volatilities f]
around its true values f;. [6] measures these volatilities with a conditional resampling method. That

is, we estimate (2.13) by
J-1

¢z I1 BlRID - il 1?). (2.14)
k=I—1 k=I—i
We therefore resample the observations ]?I,i, ‘.- ,f],l, given Dy. This means that for the determina-

tion of an estimator for the (conditional) estimation error we have to take into account that, given Dy,
the observations for ]?] could have been different form the observed values fj To regard this source

of uncertainty, we degenerate a set of 'new’ observation by the formula

C:J = fj_1Ci,j_1 +0j-1v/ Ci,j—lgi,j (2.15)

in the upper triangle, where &; j and €; ; are i.i.d random variables. Therefore given Dy, C}; and C; ;
have the same distribution.
From (2.3) and (2.15), we get the following representation for the resampled estimates of the

development factors

I—j I—j
o k=0 “k,j 0j—1 "~
fjil = Z:I*T = fj_1 + g1 m&‘i’j (2.16)
k=0 “k.j—1 k=0

further given D, fj* and f] have the same distribution.
From (2.16) and the fact that the observations C;; and €; ; are unconditionally independent, we
conclude that:
1) the estimators fg, -, f;_l are conditionally independent w.r.t Dr.
2) E[f}_4|D1] = fj—1 and E[(fi_))?|Dy] = 2., + ¢=+ for 1 <j < J.
Hence (2.14) is estimated by

J—-1

1—[ ) (2.17)

J-1
02‘2,172‘( H (fk;+
k=I—1i

Next, replace f; and o in (??) and (2.17) by their estimators, we get an estimator for the conditional
MSEP.
According to (2.12), the conditional variational coefficients of F; ; are given by
gj-1 2
VCO(Fij|Ci,j—1) f C — 0, as Ci,j—l — O
which means that the risk completely disappears for very large portfolios. However, this is not the
case in practice for there are always some external factors that influences a portfolio and are not

diversifiable. To take this risk class into account, we refer to [36].
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Model Assumption 2.3 (Enhanced Time Series model) There exist positive constants fj,l,(f?fl, aﬁl

and random variables e;; such that for alli € {0,--- I} and j € {1,---,J} we have
1
Cij = fi-1Cij-1 + (051 + a3 f7 1Cij-1)2/Cijrei (2.18)

where €;; has the same assumption as in Model Assumption 2.2. (Enhanced CL model or En-

hanced Time Series model?)

Theorem 2.1 Under Model Assumption 1.1 and 2.3, we have,

1. the conditional variational coefficients of F; ; is bounded from below by aJ i

VCO(Fij‘Ci7j—1)> lim  Veoo(Fi|Cij-1) =

7.] 1—00

a2
aj—1-

2. the conditional expectation of the ultimate claim for a single accident year coincides with (2.2)

3. the conditional process variance of the ultimate claim for a single accident year i is given by
J
H fm+ad I[ f )}
—1

Var(C;s|Dy) = ZI z[ i 1:[ (1+a )f2<
Pyl m=I—i m=I—i
I 22 J-1
seumir] 5 () 11 a+ad)]

j=I1—i n=j+1

zI

As to the parameter estimation, [36] points out that the sequence a;, usually can not be estimated
from the data unless the portfolio is very large. Hence in general a; can only be estimated from the

whole insurance market. The author proposed an iterative estimation for f; and a?, that is

f@_%
i .

—2
/\2f(k—l) I—j

I-j
—5 (k) 1 ~(0) asf; > ico C7-
2 — E: . f. 2 _ 7% E:_ »J
7%  I-j-1 iZOC”](FZ’JH i) I—j—l( Cij ZlijCj )

=0
=710 40 /AW
O o Cij+1/A;; whereAz(-Z)z

Sich T O/A

k) T
—l—a?fj(k b C”

2.2 Bornhuetter-Ferguson related Method

The Bornhuetter-Ferguson method (referred to as BF method below) goes back to Bornhuetter and
Ferguson (1972) [4]. .
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Model Assumption 2.4 1. There exist parameters pg, pt1, -,y > 0 and By, By, -+, B85 > 0 with
By =1 such that for all 0 <¢ <1 and all 0 < 5 < J we have

E[Cio] = p;8¢ and E[C; | Fij-1] = Cij—1+ p;(B; — Bi—1) (2.19)
2. The incremental claims C; j — C; 1—; was independent of Cio,--- ,Cj 1—;.
Under Model Assumption 2.4, it is easy to see that
E[Ci;] = :ui/Bj (2.20)
forall 0 < 5 < J and
E[Ci ;D) =Cii—i+ E[Ciy — Ci1—il = Cir—i+ (1 — Br_;) 1y (2.21)
Then a BF estimator for E[C;;|Dj] is given by
CPf = E[CiyID1) = Ciami+ (1= Br_y)m, (2.22)

where B 7_; is an appropriate estimator for 5;_; and p; is a prior estimator for the expected ultimate
claims E[C; j].
Recall that under Model Assumption 2.1, for any j, we have

J—1
E[C; ] = E[E[C; j|Ciyl] = f11E[Ciga] == H ThE[Ci 4], (2.23)
k=j
and hence,
J-1
E(Ci ] = [] £ ' EICi.s). (2.24)
k=j

Using (2.20), we find that Hi;; fk_1 plays the role of 3;. Therefore if we set

J—1
~(CL) ~
By =114 (2.25)
k=j
it can be readily justified that
Cig =Cir—i+(1—=Brpyand Ciy  =Cig—i+(1—=B1_)Ciy . (2.26)

This indicates that the BF estimator and the CL estimator differ only in the estimator of the ultimate

claim C; ;.
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3 Bayesian Models

There are two main directions in the framework of Bayesian theory for claim reserving. One is the
exact Bayesian method, such as [1], [10],[11], [33] and [34]. The other is the credibility theory, one can
refer to [12], [17], [22] and [35].

3.1 Benktander-Hovinen credibility method

This is not a Bayesian method in strict sense, but it has a similar form of credibility theory (see e.g.,
Biihlmann and Gisler, 2005) in non-life insurance. In this subsection, it is for the time being assumed
_——CL _—~ BF
that y; and 3; are known so that C; ;= Cj—i/B;_; and C; ;3 = Cj1—i + (1= B1_;)p;. If we let

_——CL _—~—BF
uz(c) = CCi7J + (1 — C)CiJ
for any ¢ € [0, 1], we get a mixture of the CL estimator and BF estimator. This type of estimators for
the ultimate reserves is due to Benktander (1976) and Hovinen (1981). Benktander (1976) suggested
to take ¢ = B;_; such that

_—CL _—~ BF _—~ BF
wi(Br—i) = Br-iCiy  + (A =Br-)Ciy =Cis—i+(1—-B;3)Ciy
It corresponds to an iterated BF estimator using the BF estimate to institute for the prior p,; in the
formula for BF estimator C/’Z\J
If we let p; = k;I1;, then we get the Cape-Cod Model (see Bithlmann (1983)), where «; reflects the

average loss ratio and II; can be interpreted as the premium received in accident year i.

Generally, we can choose ¢ to be the minimizer of the (unconditional) MSEP for the reserve
estimator R\i(c),

msepp, (Ri(c)) = E[(R; — Ri(c))?. (3.27)

In order to minimize (3.27), we assume that ;5 = 0,1,...,7 in (2.19) are independent of the data

C;,j and Ep; = EC; 5. The following theorem is due to Mack (2000) [17].

Theorem 3.1 Under Model Assumption 2.1, the optimal credibility factor c}, which minimizes the

(unconditional) MSEP (3.27) is given by

o Br—i Cov(Ciri, Ri) + Br_i(1 — B;_;)Var(U;)
v 1-— B],i Var(CiJ_i) =+ B%,iVar(Ui)
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3.2 Exact Bayesian Models

The Bayesian method is called exact since the Bayesian estimator E[C;;|Dy] is optimal in the sense
that it minimizes the squared loss function (MSEP) in the class LQOU(DI), in which all estimators for
C;s that are square integrable functions of the observations in Dy, that is

E[Cij|D;] = argmin E[(Ciy — Y)?|Dy].
YeLZ’CiJ(D,)

Model Assumption 3.1 1. Given ©;, the random variables Y;; = j=0,---,J are independent
for alli € {0,---,I},where v; > 0 and Z;-JZO v, =1

2. The pairs (©;, (X0, -, Xi5)) (i =0,--- ,I) are independent and Oq,--- , 0 are i.i.d.

#1’7 ’

Model Assumption 3.2 1. V;; =

(02,wij,0;), i.e., Yij have density
g 1‘91 P — b(@lj)
f(zl0; ;) = alx, — exp{g}, 3.28
(#lhis) = ale. ) L (3.28)
where b(-) is twice-differentiable w.r.t 0;, o and w;; are some positive real-valued constants.

2. ©; with densities (w.r.t the Lebesgue measure)

wy 2(0) = d(M,TQ)eXp{W%@}

For i =0,---,I, the posterior distribution of ©; given Y;¢,--- ,Y; 7—; is proportional to

exp{e[%—i- w—gf}fij}—b(e)[%+ w;]}

g

where 1(0;) = E[Y;;|0;] and
I—i I—i
ijéwij - ZJ (Z)WZJYZJ
I—i ’ -
Z] OL“}U—'—O-/T2 Zk owzk

Estimator 3.1 Under Model Assumption 8.1 and 3.2, the Dy-measurable estimators with minimized

Q; =

conditional MSEPs for E[X; j|Dr] and E[C;;|D1] are, respectively, given by

——FEDF -
Xij = 7,1 1(0;)

/\EDF /\EDF
Ci] = Ui I— @+ Z
j=I—i+1
for1<i<Iandje{l—i+1,--- I}
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So far we have assumed that p;, 7v;, 02 and 72 are known. Under these assumptions we have that
the Bayesian estimators was optimal in the sense that it minimized the (conditional) MSEP. If the
parameters are not known, the problem becomes substantially more difficult and in general one loses
the optimal results.

If the above parameters are unknown one can follow different approaches. Either one uses 'plug-in’
estimators for these parameters or one also uses a Bayesian approach.

(a) "Plug-in’ estimator. There is no canonical way how the "plug-in’ estimator for +; should be

constructed. In practice it is estimated by

@CLIB;CL*E:CL (3.29)

As to the estimation of p;, usually one takes a plan value, a budget value or the value used for

the premium calculation. For known p; and 7, one can give unbiased estimators for these variance
parameters.

(b) Bayesian estimator The Bayesian approach would be consistent in the sense that one applies

a full Bayesian approach to all unknown model parameters. However in such a full Bayesian approach

there is, in general, no analytical solution to the problem and one needs to completely rely on numerical

solutions such as MCMC.

3.3 Biihlmann-Straub Credibility Model

—_~—

In most of the Bayesian models, the Bayesian estimator p(©;) can not be expressed in a closed

analytical form for we do not know either f(x|f) or (), but just the following model.

Model Assumption 3.3 Conditionally, for all i € {0,--- I}, given ©;, the first two moments of

random variables Y;; = :ffyji, 73 =0,---,J are given by
0'2 @z
BIY;100 = u(©:) and Var(vyle) = 12 (3.30
ij

where u(0©;) satisfies py dof Elu(e;)] =1.

An usual way in actuarial science is restrict the class of possible estimators to a small class, in

which estimators are linear functions of the observations Y; = (Yo, - ,Y; 1—;), then we have to solve
the following problem

——cred . —\2

p(©;) = argmin E[(u(0;) — 1i)°]

REL(Y,1)

where L(Y;,1) = {/7 0= a0+ Zijzo Z]I;é ai;Yij,a;5 € R}
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It is easy to check that under Model Assumption 3.1 and 3.3,the best linear estimator, which is
individually unbiased and which has the smallest conditional variance, is given by
I—i
= 0 Y
Y, = M (3.31)
ZI—Z Wis
j=0 Wij
Because of the normal equation and the fact that E[Y;;] = i, the credibility estimator must be

of the form (3.32) and satisfy (3.33)

——cred

w(©;) =Y.+ (1 — i) (3.32)

ed

Cov((©7) . Yi) = a;iCou(Y;, ;) = Cov(u(©,Yy)) (3.33)
Define 02 = E[02(0;)] and 72 = Var(u(0;)) and note that

0_2

-

Denote that w;. = Z;;é wij, then it follows

VarlY;] = +72 and Cov(u(©;),Y;) = 72

2

T Wj.
a’L = 3 = ! 3 (3.34)
ol . g
w;.+T72 wi. + T2

Estimator 3.2 The inhomogeneous credibility estimator of u(0;) and C;y are, respectively, given by

——cred
/J,(@Z) = ai}/@' + (1 — Oéi)].
——cred ——cred
Cis = Cig—i+ (1= Br)pin(6s) (3.35)

where Y; and a; are given by (3.31) and (3.34), respectively.

Theorem 3.2 Under Model Assumption 3.1 and 3.3, with w;; = u?fyj for some appropriate § > 0,

the MSEP of the inhomogeneous credibility reserving estimators is given by

——cre 2
msepe, (G ™) = 2[(1 - m_»% + (1= 8?21 — ay)]

%

for1 <i<I.

Remark 3.1 Under Model Assumption 2.8, we can also consider another type of credibility estimator,
which is referred to in the literature as the homogeneous credibility. We defined the homogeneous

credibility estimator of 1(0;) as the best estimator in the class of collectively unbiased estimators

I I—i
{100 16 = 33" ayyXij, E[u(67)] = Elu(©))]a € R}.
i=0 j=0

Remark 3.2 The credibility Model can also apply to the individual development factors.



Reinsurance and Systemic Risk:
The Impact of Reinsurer Downgrading on Property-Casualty Insurers

4 Distributional Models

The Log-normal model was first considered by [13] and described in [15] and [30], section 7.3. The

model considers cumulative claims and Log-normal distributions.

Model Assumption 4.1 1. The indvidual development factors F;j are Log-Normally distributed

with deterministic parameters §; and a , that is

= log(Fyj) ~ N(¢;,07) (4.36)

for alli € {0,1,--- I} and j € {0,1,---,J}, where C; 1 = 1.
2. n;; are independent for i € {0,1,---, I} and j € {0,1,---,J}.

Estimator 4.1 We estimate the parameters §; and O’? as follows

N 1 I—j _ 1 I—j N2
£ = m glog(ﬂj) and o? = ﬁ 2. (long Ej) (4.37)

Moreover, EJ and 8]2 are stochastically independent.

First we assume that the variances 0%, e ,0'?] are known. Define Z;; = logCj;, hence we have

J
EZiy|Di) = Zis—i+ Y, my

j=I—it1
which is estimated by
J
Ziy = [ Zij|D1l = Zijr—i + Z §;
j=I—i+1
Note that
E[Ciy|Di] = Elexp{Zis}|Ci,-i]
J
= eXP{Zi,I—i} H E[mﬂci,l—i]
j—17i+1
J
= z[ zexp{ Z 6; Z 0—3} (438)
j=I—i+1 ] I—i+1
and
e J
Elexp{Z;;}|Ci1—i] = exp{Z; i} E[exp{ Z
=I-
= lI zeXP{ Z 6] Z 7 ]+1} (439)
Jj=I—i+1 ] I—i+1

thus, the next estimator is straightforward from (4.38) and (4.39).
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Estimator 4.2 Under Model Assumption 4.1 with O’? known, fori=1,--- I, an unbiased estimator
for E[C;;|Dy] is given by
—LN =~ — 1 9 1
Ci; " = E[Ciy|Dy] = exp{Zu 5 > o (1 - 7)} (4.40)
j=I—it1
and the conditional MSEP is given by

J J 2
] LN\ _ 2 2 95
msepc, ;|c, ;_, (Ci ) = E[C;|Cj 1-i] (exp{ | Z O'j} + exp{ | Z 1o 1} — 2)
j=I—i+1 j=I—i+1
However, in general, the variances a? need also be estimated from the data. We could obtain an

estimator by replacing a? by 0’? in (4.40), but this estimator is no longer unbiased.

Estimator 4.3 Under Model Assumption 4.1 with * unknown, the estimator for E[C;;|Dy] is given

by
J
—~LN,,2 ~ — 1 -5 1
j=I—i+1
Remark 4.1 In [10], several distribution models for incremental claims are introduced,and most of

them can be regarded as a special case of generalized linear model. Hence we will illustrate them in the

next section.

5 Generalized Linear Models

The standard GLM techniques for the derivation of estimates for incremental data in a claim reserving
context was first implemented by Renshaw [25] and Renshaw and Verrall [26]. A good overview on

this can refer to [10] and [11].

5.1 Generalized Linear Models Framework for Claim Reserving

As the usual generalized linear model, the generalized linear model for claim reserving has three

components. We illustrate them in the form of Model Assumption.

Model Assumption 5.1 1. The increments {X;;,i = 0,---, 1,5 =0,---,J} of different accident

years i and development year j are independent and satisfy

E[Xm‘] =T, and VCLT‘(XZ‘J') = ¢Z’] V(l‘m‘) (5.42)

Wi, j

where V (+) is an appropriate variance function.
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2. {zi;,i =0,---,1,j =0,---,J} can be specified by a number of unknown parameters b =
(b1, -+, by) which produce a linear predictor n = (n; ;){i=0,. 1,j=0,- 7}
;5 = Lijb (5.43)

for appropriate (deterministic) (1 x p)-design matrices I'; ;.

3. There exist a monotone link function g such that
9(wij) =n;; =Tizb (5.44)

Example 5.1 Assume that X;; has density (3.28) with b ~'(-) ewists and we have a multiplicative

structure
Lij = MY (5.45)

with p; standing for the exposure of accident year i and vy; denotes the claim pattern over different

year j.

For the multiplicative structure, an straightforward choice for link function is the log function.

Then we have
log(zi;) = n;; = log(p;) +log(7;). (5.46)

Therefore we have p=1+ J + 1 and

b = <log(U‘1)) e alog(ﬂl>v log(’YO)’ e 710g(7J))/ (547)

and

FiJ = (Oa ,0,62‘,0,"' 705 e]+j+1707"' 70) (548)

for 1 <4 <171 and 0 < j < J, where the entries e; = 1 and eyy;1; are on the ith and (I + j + 1)th
position respectively.

Since X; ; belong to Exponential Dispersion Family, we have

bij

def 1" (6:5) (5.49)

E[Xz] = Tij = b’(@ij) and VCL?"(XZ‘]‘) =

v

then the variance function is given by
V(i) = " (0" (15)) (5.50)

Remark 5.1 In [10] and [11], several incremental models are proposed, such as the Poisson model,
Gaussian Model, all these models can be regarded as a special class of GLM with V (x; ;) = mﬁj. For
example, p = 0 we get the Gaussian Model, p = 1 we get the Poisson Model and p = 2 we get the
Gamma Model.
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5.2 Parameter Estimation in the EDF

Now we use MLE on the set of observations Dy = {X@ﬁi-ﬁ-j < 1,0 <j < J} to estimate the unknown
parameter in Example 5.1. Refer to (5.49) and (3.28), the log-likelihood function can be written as

Ip,(b) =log [ f(Xij;0ij, bijswij)
i+5<I

D U Xijs wig, 6y, wis)

i+j<I

= > UXiji v bijs wis)

itj<I

We maximize Ip,(b) by setting the I + .J + 1 partial derivatives w.r.t the unknown parameters f;

and ~; equal to zero. Thus we obtain 7i; and 7; and hence

—_— e

b = (log(p), - ,log(ur),log(vo), -+ ,1og(7,)) (5.51)
with 1@) = log(z;) and lcg(v\j) = log(7;). Hence we derive the following estimator.
Estimator 5.1 The MLE in the EDF Model 4.1 is given by

XGPT =2y = E[Xy|D1] = 177,

J
CLPY = E[Ci;|D1] = Ci 1 + Z X5Pr
j=T—it1

fori+j>1.

Remark 5.2 Usually the calculation of MLE and MSEP need to use numerical methods, such as the
Fisher’s scoring method or the Newton-Raphson algorithm.

6 Bootstrap Methods for claim reserving

The general idea behind bootstrap is to make a data resampling from the data themselves. In the

actuarial literature, bootstrap methods appears, for example, in [11], [29], [31] and [32].

Assume we have n i.i.d realizations Z3,--- , Z, from an an unknown distribution F' and h(F) is a
parameter of F', such as the mean or variance. g is an unknown function of the data Z1,--- , Z,, which
. . o1 N . ~ d
estimate h(F'). Our goal is to learn more about the probability distribution of 6,, =) 9(Z1,-+ 7).

If we know the data generating mechanism F', we can sample new i.i.d observations from F'. This

would give a new value for @n Repeating this procedure several times would lead to the empirical
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distribution of 8,,. However, since F' is unknown, we use an estimator Fj to reproduce observations.

That is we generate new data

d
zt- 70 1id YR (6.52)
where Fj is the empirical distribution of Zi,---,Z, in nonparametric case and in parametric case,

Fy = F; since F' is known up to a finite vector of unknown parameters Ao (X is an estimator of Ay from
Zy,--+,Zp). The new data vector (Z7,---,Z%) is called a bootstrap sample. Then for the bootstrap

sample we can calculate a new value for the estimator 6,

~k

en :g(Zik,--- ’ZZ)

repeating this idea several times, we get an empirical distribution ﬁ;: for @Z

In the framework of claim reserving, we are interested in the distribution of

WF) = E[Xy|Di) (6.53)

i+j>1

which are expected open loss liabilities/outstanding claims reserves at time 1.

6.1 Log-Normal Model for Cumulative Sizes

Recall that under Model Assumption 4.1, for any j € {1,---,J},

id.d
Mjs o Ni—j5 ~ N<§j7 U?) <654)
and
I J 12
WF)=> Cir (GXP{ g+ 3 Y i - 1) (6.55)
i=1 j=I—i+1 j=I—i+1

Since the parameters are not known they need to be estimated, and the appropriate estimators
were provided by (6.1). This has led to the following estimator for h(F'), given the observations Dy,
I AT A 1
o= (ep{ D G4y X A0} 1) (6.56)
i=1

i j=I—i+1 j=I—i+1

and our goal is to study the distribution of the estimator ¢g(Dry).
Since we have explicit distribution assumptions to 7;;, we would like to apply the parametric

bootstrap method. This means that we need to generate new independent observations n;‘j, that is

* (d) PPN
Nij ~ N(fjaU?)
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which leads to the bootstrap reserves

I J g,
(o) =3 (exp{ > ;+é Y o2 (- I;H)} f1> (6.57)

i=1 j=I—i+1 j=I—i+1

~

where §Aj* and O’? are estimated by with the bootstrap sample (772‘71, e ,n’l‘fj7j.) Repeating this

procedure several times we obtain the empirical distribution of g*(Dy), given observations Dj.

6.2 Generalized Linear Models

In order to apply Efron’s nonparametric bootstrap method to example 5.1, we once again need to find
identically distributed residuals that allow for the construction of the empirical distribution Fi, see
(6.52).

In the following, we assume that ¢ =

¢Z is constant and as in England and Verrall (2002, 2007),

w

we choose the Pearson residuals given by

Xi' — :lfij

e (6.58)

R i) =

Note that the residuals have mean 0 and variance ¢. Therefore Rz(f)(xij) is a natural object to

define the bootstrap distribution. Hence, we set for ¢ + 7 < I,

Xij — xij

Zij = V(@j)lﬂ

(6.59)

These {Z;;,1+ j < I} defines the bootstrap distribution ﬁpl. Then we resample i.i.d residuals
Z ~ Fp,
and hence we define the bootstrap observations of X;; by

X} =3+ V(@y)225 (6.60)

These bootstrap observations XZ-*j now lead to bootstrap claims reserving triangles D} = {XZ-*J-, 1+

j < I}. Using GLM methods, we calculate bootstrap estimates pu, 7; and ir\fj from the bootstrap

observations Dj. This leads to the bootstrap claims reserves { X ity >1 }. Repeating this bootstrap

sampling several times we obtain the bootstrap distribution of the claim reserves, conditioned on Dj.
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6.3 Chain Ladder Method

Under Model Assumption 2.3, the individual development factors are given by

C; _

_ Uig+1 1/2

Fijrm1= 4> = fj +0;C; e
1

for the time being we assume that o; is known.

In order to apply the bootstrap method we again need to find appropriate residuals that allow
for the construction of the empirical distribution F}, from which the bootstrap observations are con-
structed.

Consider the following residuals for i + 7 < 1,5 > 1,

Fii — £
&= ——2, Jiﬂ/lg (6.61)
Ujflci,j—l

where the estimator f/'; are given in (2.3). Note that E[€;;|B;—1] = 0 and
~ Cij-1
VaT(€¢j|Dj,1) =1- = o] <1
2=y Cij
which means that we should adjust our observable residuals €;; in order to obtain the correct order

for the estimation error.

Define N
Cijo1 V2 Fy— i
paris ) Fy =it (6.62)

>izy Cij—1

T — (1 —
ij Jj_1C'~_Al/2
where fj and 3?are given in (2.3) and (1.8). These residuals {Z;;,i + j < I} defines the bootstrap

i,j—1
distribution ﬁpl. Then we resample i.i.d residuals
Z}; ~ Fp,
and hence we define the bootstrap observations {F};,i + j < I'} by
X} =y + V(@) Y225, (6.63)
1] .’EZ] 23'” 1 .

In contrast to the methods in subsections 5.2 and 5.3, the next step of reproducing bootstrap

observations F}; of Fj; is not straightforward.

7 Multivariate Reserving Methods

The study of Multivariate claims reserving methods are motivated by the fact that, in practice, it

is quite natural to subdivide a nonlife run-off portfolio into subportfolios such that each satisfies



2012 China International Conference on Insurance and Risk Management
July 18-21, 2012 Qingdao China

certain homogeneity properties. They have been studied by [5], [27], [28] and [36]. Another type of
multivariate claim reserving method is studied by [18] and [24], where one combines different sources
of information in the same estimate.

In the following we assume that the subportfolios consist of N > 1 run-off triangles of observations
of the same size. The incremental and cumulative claims of triangle n(1 < n < N) for accident year 4
and development year j are denoted by Xi(f) and Ci(;-l).

Usually at time I, we have a total set of observations given by DY = Uilvzl Dgn) where D}n) =
{C}n) 24+ j < I} is the observations for run-off subportfolio n. And we need to predict the random

variables in its complement, which is given by
pNe — o™ .y ;
ro={Cy i+ji>1,1<n<N,i<I}

For the derivation of the conditional MSEP of multivariate methods it is convenient to write the
N subportfolios in vector form. Thus we define the N-dimensional random vectors of incremental an

cumulative claims by

1 N)\/ 1 N/
Xi;=(xP o xMY and cy =0

for i € {0,--- ,I} and j € {0,---,J}. Moreover, we define for k € {0,---,J},
DY ={Cij:i+j<I1,0<j<k}

and the N-dimensional column vector consisting of 1’s by 1 = (1,---,1)".

7.1 DMultivariate Chain-Ladder Method

We define forn € (1,--- ,N), i€ (0,---,I) and j € (1,---,J) the individual development factors for

accident year ¢ and development year j by

(n)

n Gy ! My
Fi(j):(T]) and Fij:(ﬂ(j)v""Fi(j ))
ij—1

and denote by D(a) for the N x N diagonal matrix generated by the N-dimensional vectors a =

(a1,--- ,an) € RY. Then we have
Cij = D(C;;-1)Fi; = D(Fi;)C;j1

forall j=1,---,J and ¢ =0,--- ,I The distribution-free multivariate CL model is then given by the

following definition.
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Model Assumption 7.1 (multivariate CL model) 1. Cumulative claims C;; of different acci-
dent years i are independent.

2. (Cij)j>0 form an N—dimensional Markov chain. There are N—dimensional deterministic
vectors f; = (f;l), e ,fj(N)), > 0 and symmetric positive definite N x N matrices 3 such that for all
0<i<TIandl1<j<J we have

Cov(Cij, Cij|Cij—1) = D(Cij-1)?%;-1D(Cij1)? (7.64)

Analogical to equality (2.2), we have the following theorem.

Theorem 7.1 Under Model Assumption 7.1, given ’D;V, the conditional expectation and process vari-

ance for C;; are, respectively, given by
j—1
E[Cy4DT] = D(£)Ci,1-s
I=I—i

J—-1 -
(X H D(£)% H D(f))1 (7.65)

J=I—i k=j+1 k=j+1

l/Va’I"(Cz‘J|D}V)1

where S = E[D(Cj;)2%;D(Cy;)? |Cy1—i].

Under Model Assumption 7.1, conditional on DY, [23] and [28] propose the BLUE for f;,

I—j-1 (-t

7 :< 3" D(Cyy)zs;D(C %) EJ: D(Cj;) 2% 'D(Cyj) 2 Fy i1 (7.66)

=0 1=
Then an unbiased estimator for E[C;;|DY] is given by

I /(\UCL /(F)CL , . N Jj—1 .

Cy; =(cy ,---.c;’ ) =E[Cyp} =[] DE)Cis (7.67)
I=I—i

Using theorem 7.1 and (7.66) we have, the conditional estimation error of accident year i > 0 is given

by

1(C5h - E[Cy|DY))(CH" — E[Cy D)) 1
J—1 N J-1 J—-1 N J—-1 N
= V(] o@&) - [ D)CisiCiri( ] D) D()))1
G=I—i G=T—i =T—i G=T—i
= 1'D(Cir-i)(Gis — 9i15)(Gijs — 9i1)'D(Cir—i)1 (7.68)

where b\zlj = D(f],z‘) ce D(fj_l)l and il = D(fj) s D(fj_l)]..
In order to determine the conditional estimation error, analogous to the univariate case, we intro-

duce stronger model assumptions.
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Model Assumption 7.2 (multivariate Time Series Model) 1. Cumulative claims Cy; of differ-

ent accident years i are independent.

2. There exist N-dimensional positive constants f; = (f;l), e ,f;N))/ and o = (05-1), e ,UE-N)),
and N -dimensional random variables €; j 11 = (55,1j)+1’ e ,ngﬁl) such that for 0 <i< I and 0 < j <

J — 1, we have
Cij+1 =D(£;)Ci; + D(Cjij)"/*D(eij41)0;

3. The random variables €; j41 are independent with Eleg; j11] = 0 and positive definite

(1 2) (1,N)
(21 1) " N '0%2 N)
' p 1 DY p
Cov(eiji1,€ij+1) = Eleijriggjpal = | 7 o
NJ N2
R

where pg-n’m) € (—1,1) forn #m.

We now describe the conditional resampling approach in the multivariate setup, that is, we condi-
tionally resample /f\[_,-, ‘e ,/ft]_l given the triangle D}V . Hence we generate 'new’ observations (~3i7j+1

for i € {0,---,I} and j € {0,---,J — 1} using the approach
Cij1 = D(f;)Ci; +D(Cij) *D(Eij11)0; (7.69)

where €; j11,€;41 are i.i.d copies, given Dév. This means that C;; acts as a deterministic volume
~ d
measure and we resample successively the next observation C; j;1 9@ Ci, j + 1,given Dév .
In the spirit of conditional resampling approach this leads to the following resampled estimates of

the multivariate development factors

I—j—1 L T=i-1
67 = (X DOEID(C) ) 3D DG D(C) AD(Cy) i
=0 =0
I-j—1 [ 1-i-1
= fj+ Z D(Cij)l/zz;lD(CU)l/Z) Z D(Cij)l/QEng(Ei7j+1)aj. (770)
=0 =0

As in the univariate time series model, we denote the conditional probability measure of the resampled

estimators by PZ(;?,. This way we obtain the following lemma.
I

Lemma 7.1 Under the resampling assumption, we have
1. the estimators ?é*), e ,E(I*_)l are independent and unbiased for f; under the probability measure

2. E(*) []/‘;(n)ﬁ(m)] f](n)f(m) + Wj(n,m), where Wj(n,m) is the entry (n,m) of the N x N matric

1
defined by W; = (Zf:g D(C i])l/ZE 'D(C; )1/2)
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Using the above lemma, we obtain the following estimator for (7.68),

1'D(Ci,f—i)E§3§v [(Gi1g — 9i10)@i1g — 9410)']D(Cir—)1 = 1'D(Cy 1) (Agffm))lgnymSND(Ci,I—i)/l

(7.71)
where the (n,m) entry of (Agj:b;m))lgn,mSN is given by
J—1 J-1
A = T (1™ + winm)) = T £ (7.72)
J=I—i j=I—i

7.2 Multivariate Additive Loss Reserving Method

The multivariate ALR model was proposed by [14] and [28]. The multivariate ALR method is based on
incremental claims, and hence is more in the spirit of the (univariate) GLM models. In this subsection

we closely follow [19].

Model Assumption 7.3 (multivariate ALR time series model) 1. Incremental claims X;; of

different accident years i are independent.

2. There exist (N x N )-dimensional deterministic positive definite matrices Vg,--- , Vi and N-
dimensional constants (j=1,---,J)
1 N)\/ 1 N/
mj:(m§),-~' ,mg- )) and Uj_lz(agjl,"~ ,ag;%)
with Ug-]iq >0 foralln=1,---,N as well as N—dimensional random variables €;; such that

X;; = Vim; + V2 D(eyj)or; 1.
3. The random variables €; j+1 are with the same assumption as in Model Assumption 7.2.

Theorem 7.2 Under Model Assumption 7.3, we have for all i € {1,--- I},

J
E[Cy|D}] = E[Cy[Ciri]=Cisii+Vi Y my
j=I—i+1
J
1'Var(CiylDV)1 = 1V 3 w1 (7.73)
j=I—i+1

In most practical applications we have to estimate the ratios m; from the data in the upper

triangle. [28] proposed the following unbiased estimator.

=5 1\ -1 1 1
VIS VE) S (VS Y ViXy, (7.74)

J
m; = (
i=0 =0

~
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Then the multivariate ALR estimator for E[C;;|D¥] is, for i +j > I, given by

_—AD /(\1)AD /(F)AD , . J
Cij = (Cij yr ’Cij ) = E[C”ﬂ)}v] =Ci 1 +V Z ﬁlj (7.75)
—I—it1

Remark 7.1 In (7.73)-(7.74), we assume 2]7_11 are known, otherwise mj and 2]7_11 should be estimated

iteratively, A |
) (N 0 1y ) TS g ) 1y
T (ZVZ (5) Vi ) (V2 (B0 ViPViXy
i=0 i=0
1 ,
k) “1/2(x.. _ y k1) e (k-1) —-1/2

Lemma 7.2 The estimator for the conditional MSEP of the ultimate claim for single accident year i

s given by

N _— AD J
By oo (DO ) =1V YT Sy
n 7ij . .
n=1 j=I1—i+1

J I—j .
VY (W) v

j=I—i+1 =0
and the estimator for the conditional MSEP of the ultimate claim for aggregated accident year is given
by

N — AD N — AD

g, oy (S ) =Sy o (5

i,n Tij n ij

—J

+2 Y 1y Z (Z 1/2)_1V,€1

1<i<k<I j=I—i+1 1=0

Remark 7.2 In [20], Merz and Wiithrich combine Model 7.2 and 7.3 into one model. The consid-
eration of such a combination is motivated by the fact that, in general, not all subportfolios satisfy
the same homogeneity assumptions and/or sometimes we have a prior information for some selected

portfolios.

7.3 Munich Chain-Ladder

In practice, one often has the situation that different sources of information are available to predict the
ultimate claim. For example, one has cumulative payments data and claims-incurred data to estimate

the ultimate claim. Usually the CL method is applied to both data independently.
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In the following we denote by superscript Pa for the payment data and superscript In for the
claims-incurred data. Moreover, we define 75j = Dfa U D]I" for j=0,1,---,J.
If we assume both the data satisfy Model Assumption 2.1, we can independently predict the

ultimate claim of accident year i by

J-1 Zl—j—l Pa

J—1 I—j—-1 In

—CL . 1 —CL § ; cimn
=0 J+1 =0 J+1

Che = C{’,{i || =0 W) and Cfn = C{,?,i || s ¥

I-j—1 ~Pa I-j—1 ~In
Gj=I—i Zi:O Ci,j j=I—i Zi:o Ci,j

Since we predict the same random variable twice, namely C;; = C’iP = C’Z-I}‘, we expect the two
estimators are close to each other. The crucial idea in the MCL model proposed by [24] is to combine
the information coming from cumulative payments and claims incurred data. This is done using the
paid/incurred rations. That is, we consider

che
clr

Qij

Model Assumption 7.4 (MICL Model) 1. Both the cumulative payments C’f;“ and the Claim in-
curred C’iljn satisfy Model assumption 2.1 with parameters (fjpa, Jf“) and (. jI”, 0§"), respectively. Fur-
ther we assume CZ-];-CL and C’ilj?"” are independent of different accident years.

2. There are constants )\Pa, A" such that forall0<i< T and 0<j<J—1 we have

Cit Clf ~pa\ Qi — BlQ5' D]
B|Gpat D] = " 4 AP Var (S D) S (7.76)
ij ij Var(Q;;'|D;?)
cin cln - _ ~1 _ ElQ: D"
B[ =SB, = 14 A Var (=S D) 22 SRt 777
o 1P s e P Var@; o 7

In this subsection we consider the approach proposed by [18]. That is, we have to solve the
optimization problems
Zhe = argmin E[(E[CE|D;1] - 2)°|DP*)]
zeL(Cclr1)
and
ZIn = argmin E[(E[C[P|D;1] - 2)*DI™)]
ZeL(CEe1)
where L(Cjj,1) = {ai0 + ai1Cij-1 : aip,a;1 € R}. The estimators Z/Z-];\“ are called best affine-linear
one-step estimators of F [C£“|gj] given Df ¢ and DJI“. It can be shown that the estimators Z/i];\“ exist

and are unique almost surely. Further, Zi];“ satisfies the (conditional) normal equations

E[(E[CF|D;—1] — ZE Dl =1 aus. (7.78)
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E[(B[CL*|D;—1] - ZPa)c” [DF4] =1 as. (7.79)

The same conclusions apply analogously to ZlI]” Based on (7.78) and (7.79), we obtain the following

representation for Zf;a and Zf]”

Theorem 7.3 Under Model Assumption 7.4, the best affine-linear one-step estimators ZZ-IJD-“ and ZZIJ"

given Df“ and DJI»”, are given by

—= 1 on pPa
Zi];a — CPa L+ APevar (CiPa|fDPa ) ij—1 " [ ,j— 1| 3171]
Var(Cl1_,|DF*)2

and

L(Pa E{cf’a |Df,n ]

n n n n n i,j—1 i,j—1 —1
Zlp = fIm Ol + MVar (Clppin, )P SR — T L
VC““(Ci,‘afﬂDjﬂ)z

where A7 = Cor(CFe, CI"_ | |DP) and N'™ = Cor(Clr,CPe | |BI)).

Obviously, the estimator Z/i]? and 2{} are unbiased for E[Cgﬂﬁj,l] and E[Cg“@j,l], respec-
tively.

In order to perform the MCL method we need to estimate/predict the two correlation coefficients
AP% and A" as well as E[Qi7j_1|DjIﬁ1], E| Z;_ﬂfol], Var[Qi,j_1|Bj[” ] and Var[@Q; ;_ I\Dpa ]

For the derivation of reasonable estimates we assume that E| l-_’jl |DP %] and E[Q; ;- 1\1? 1) as

well as Var[Q; ! |Df_"1] and Var[Qi,j,ﬂDjlﬁl] are constants depending only on j =1,---,J. We set
I I a
B Y e, - =
J T ij X T ~I—j ~In
s C{J” = Xizo Cif
. S I=icln
S YN OP“ S xck
o I ](Cln
Var(Qy|D}") = (Zcf" - i‘l T ) Zcf" Qi — )
and . . .
o —J Z~7](C»P»a)2 1177 o
- a a =0\"" @l — _
Var(Q3;'|Dj) = (205 - A ) > @y —a )’

I—j a
i=0 Zi:O]Ci]; i=0
forall0<i<JTand 0<j<J—1.

Lemma 7.3 Under the assumption that E[Q;; |BP“] [Qij|D§”], COV[Q;j1|Dfa] and COV[Q,-]-|DJI»"}

are constants depending only on j for 0 < j < J, we have
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1. given ’DJI”, q; is an unbiased estimator for E[Qij|’l)§”] and @(QMDJI-”) is an unbiased esti-
mator for Var(Qij|D]I”), and
2. given Df“, q;l is an unbiased estimator for E[Q;j1|8fa] and @"(Q%I\Dfa) is an unbiased

estimator for Var(Q;j1|Df“).

There remains to estimate the 5j,1—measurable correlation coefficients AF'® and A™. They are

estimated by

P ~ ~
)TP\G Zl<z+]<l Q ij— 1F “ and X}; _ Z1§i+j§1 Qi,j—len
_]_ - ~
Zl§z+]§I(Q 7]—1)2 Zlgi—i—ng(QiJ*l)Q
respectively with
— -1 —1
QV. = inj_l B qj_l and ~—1 ) _ i,j—l - Qj_l
9, = = n i1 = =) T
VCL’I‘(QL]‘_H'DJEI)U? Var( i,j—lle21>1/2
Pa In
e {4 O R A
i,j—
P I
71(01‘,]@71)1/2 O-j—l(Cz'g—l)l/Q

Hence the predictors of the MCL method are given by

Estimator 7.1 The MCL estimators are given iteratively by

o a7 o a 951
BCheDy) = BICE [Py (77 + AP
Pa.

~ ~ ~ o
E[CI D) = BICH D) (£ + A" e

fori+j > I, where we set E[C” Z\D[] CcPa . and E[CZI |D1] CI?

i, 0—1
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